Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition

Laetitia Gabernet,¹ Shantanu P. Jadhav,² Daniel E. Feldman,³ Matteo Carandini,³ and Massimo Scanziani¹,²,*
¹Brain Research Institute
University of Zurich
8057 Zurich
Switzerland
²Neurobiology Section
Division of Biology
University of California, San Diego
La Jolla, California 92093
³Smith-Kettlewell Eye Research Institute
San Francisco, California 94115

Summary

The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.

Introduction

Timing is a basic attribute of sensory stimuli and needs to be faithfully represented by the nervous system to allow accurate stimulus identification and discrimination. Accordingly, temporal features of stimuli are accurately encoded and conveyed through the thalamus to the sensory cortex in several different sensory modalities (Arabzadeh et al., 2005; Buracas et al., 1998; DeWeese et al., 2003; Phillips et al., 1988; Reinagel and Reid, 2000; Wehr and Zador, 2003). For example, the timing of spikes in somatosensory cortex precisely reflects the temporal sequence of stimuli generated while touching an object (Phillips et al., 1988), and moment-to-moment changes in spiking probability of barrel cortex neurons precisely reflect instantaneous variations in the velocity of a whisker sweeping over a surface (Arabzadeh et al., 2005).

Although this temporal precision is likely to be crucial for sensory representation, the cellular mechanisms that enable cortical neurons to follow the temporal structure of their thalamic inputs with such fidelity is currently unknown. In the cortex, individual thalamic afferent fibers impinging on principal neurons mediate excitatory postsynaptic potentials (EPSPs) that are small (Gil et al., 1999; Stratford et al., 1996) compared to the depolarization necessary to trigger a spike (Brecht and Sakmann, 2002). Hence, EPSPs resulting from several fibers have to summate to reach threshold for action potential generation. The time window within which EPSPs can effectively summate (Lloyd, 1946) is called the integration window (IW). The shorter the IW, the more coincident the activity of presynaptic fibers has to be to trigger a spike (Koch et al., 1996; Konig et al., 1996; Pouille and Scanziani, 2001). The IW, thus, dictates how precisely the activity of a neuron can report the temporal structure of the activity of its inputs.

To establish the basis for spike timing precision in the initial steps of sensory processing in the somatosensory cortex, we determined the cellular mechanisms that control the IW of principal (excitatory) layer 4 neurons to thalamic inputs. Here, we demonstrate that the IW of layer 4 principal neurons has a broad dynamic range that can vary over an order of magnitude in an activity-dependent manner. The duration of the IW is dynamically regulated by an efficient and temporally precise thalamocortical feed-forward inhibitory circuit. Feed-forward inhibitory circuits are well known to participate in the enhancement of spatial contrasts of somatosensory stimuli (Mountcastle, 1968; Mountcastle and Powell, 1959). Our data show that these circuits also enforce and modulate temporal resolution of tactile information.

Results

Dynamic Control of Spike-Timing Precision in Barrel Cortex In Vivo

Spiking responses of regular spiking (RS) units, which represent presumed excitatory neurons in layer 4 of barrel cortex, were measured for low frequency (0.5 Hz) principal whisker (PW) deflections in anesthetized rats. Spikes were tightly time locked to the stimulus (jitter, 4.05 ± 0.28 ms; n = 105) (Figure 1A), despite occurring with relatively low probability (0.25 ± 0.02), consistent with previous observations of high temporal precision in barrel cortex (Arabzadeh et al., 2005; Petersen et al., 2001; Shimegi et al., 1999). Repetitive stimulation of the whisker at 10 Hz, similar to natural whisking frequency, however, led to a significant increase in jitter of layer 4 RS units (jitter; fourth stimulus, 5.79 ± 0.32 ms [p < 0.01]; sixth stimulus, 7.93 ± 0.43 ms [p < 0.001]; paired t test; n = 105) (Figures 1B and 1C), along with an adaptation (decrease in spike probability) and increased latency. To determine whether the increase in spike jitter reflects dynamic changes in the thalamocortical circuit, rather than in the periphery or the brainstem, we recorded from thalamic units in the VPM nucleus, which provide input to layer 4. VPM units showed virtually no increase in jitter during 10 Hz principal whisker stimulation, indicating that the temporal precision of

*Correspondence: massimo@ucsd.edu
cortical spiking responses is dynamically regulated downstream of the thalamus. Because 10 Hz whisker stimulation reduced whisker-evoked spikes for RS units (Chung et al., 2002; Khatri et al., 2004) (Figures 1B and 1C), the increased jitter could merely reflect weaker excitatory input to RS units or increased contamination of weak whisker-evoked responses by spontaneous spikes. To address this possibility, we tested whether spike jitter was correlated with spike probability across RS units. No correlation existed (r = 0.04) (Figure 1D). In addition, an identical increase in jitter occurred when long recovery times were used between 10 Hz trains, a protocol that leads to less adaptation and more spikes (Figure 1D). Thus, the increase in spike jitter during trains was not due to reduced excitation of RS neurons or the small number of whisker-evoked spikes.

These data show that the temporal precision of cortical responses to somatosensory stimuli is dynamically regulated by a circuit downstream of the thalamus. To establish what controls this dynamic range, we determined the integration window (IW) of cortical units to thalamic inputs in vitro.

Figure 1. Increased Spike Jitter of Layer 4 RS Units In Vivo by Repetitive Whisker Stimulation
(A) Raster plot and peri-stimulus time histogram (PSTH) of the response of a single RS unit to PW deflection (1.5°, 0.5 Hz, 100 trials). Insets: raw voltage recording and representative spike waveforms (red) and mean waveform (black) for the RS unit after spike sorting.
(B) PSTHs of the responses of a layer 4 RS unit and a thalamic (VPM) unit to 10 Hz principal whisker (PW) deflection. Note the pronounced adaptation (decrease in spike probability) and increase in jitter (width of the PSTH peaks) of the RS unit as compared to the thalamic unit. Insets: single-unit spike waveforms.
(C) Effects of 10 Hz stimulation across the population of layer 4 RS and thalamic units. Top: population PSTHs for onset responses to first and fourth stimuli in the 10 Hz train. Curves represent Gaussian fits. Note the increased jitter in layer 4 RS cells, but not in thalamus. Bottom left: spike jitter increased with stimulus number in the train for RS units (increase in jitter was significant after the fourth stimulus in the train, p < 0.01, paired t test), but not for thalamic units. Bottom right: adaptation of whisker-evoked spike count (normalized to first stimulus in each unit) for the population of RS (n = 105) and thalamic units (n = 22). RS units adapted significantly faster than thalamic units (RS, adaptation index [AI; defined as the ratio of fifth stimulus response to first stimulus response] = 0.19 ± 0.03; thalamus, AI = 0.47 ± 0.07; p < 0.001, t test).
(D) Increase in jitter during trains is not due to decreased spike count. Top: jitter for RS units grouped by whisker-evoked spike count to the first stimulus. Increase in jitter occurred equally for the strongest responding and the weakest responding units. Bottom: population PSTHs for first and fourth stimuli for RS units tested with a longer recovery time between each stimulation (10 s, n = 22) to produce less adaptation. Note the marked increase in jitter despite less adaptation. Summary graphs show mean ± standard error of the mean (SEM).
Dynamic Integration Window in Cortical RS Neurons

To determine the IW of cortical neurons to thalamic inputs, we recorded from layer 4 RS neurons in thalamocortical slices and stimulated their thalamic afferents with an extracellular electrode placed in the ventrobasal complex (VB; see Experimental Procedures). Thalamic stimulation evoked an EPSP/IPSP sequence, consistent with previous reports (Agmon and Connors, 1991; Gil and Amitai, 1996; Porter et al., 2001). Artificial excitatory postsynaptic potentials (aEPSPs) were evoked in RS neurons (with either current or dynamic clamp; see Experimental Procedures) at different intervals after thalamic stimulation.

RS neurons exhibited a very narrow IW to thalamic inputs. To effectively summate (i.e., to depolarize the membrane more than the peak-positive value of the thalamic response), we had to evoke aEPSPs within \(~1\) ms (range, \(<1\) to \(3\) ms; \(n = 6\)) after the onset of the thalamic EPSP (Figures 2A–2C). An IW of 1 ms is extremely narrow, particularly when compared with the membrane time constant (17 ± 1 ms; \(n = 9\)). This result suggests that RS neurons operate as coincidence detectors.

The IW, however, was broadened by a factor of ten after repetitive stimulation. Repetitive thalamic stimulation at 10 Hz led to a pronounced and reversible increase in the IW by about one order of magnitude (to \(~10\) ms after four to five stimuli; range 3 to \(>25\) ms; \(n = 6\)) (Figure 2C). This broadening of the IW was caused by an increase in the half width of thalamically evoked postsynaptic potentials (PSPs; from 1 ± 0.3 ms after the first stimulus to 20 ± 5 and 18 ± 5 ms after the fourth and fifth, respectively; \(n = 8\)) (Figure 2D) and by a reduction in the shunt (Coombs et al., 1955) of aEPSPs evoked shortly after the onset of thalamic IPSPs (first stimulus, 17% ± 3% reduction of aEPSP amplitude; fifth stimulus, 4% ± 3% reduction) (Figure 2). Both effects—the increase in half width of the thalamic PSP and the decrease in the shunt—could be explained if repetitive stimulation reduced synaptic inhibition.
We asked whether repetitive stimulation of VB would affect the amplitude of thalamocortical feed-forward inhibition. RS neurons were voltage clamped at $-60 \text{ mV}$, i.e., between the reversal potentials for excitatory and inhibitory postsynaptic currents. VB stimulation elicited an EPSC followed with a delay of $1.2 \pm 0.1 \text{ ms}$ ($n = 11$) by an IPSC (Figure 3A). The brief delay between EPSC and IPSC indicates that IPSCs were triggered in a feed-forward, disynaptic manner, i.e., by thalamic excitation of cortical GABAergic interneurons rather than by a feedback recruitment of interneurons via cortical RS neurons. The EPSC-IPSC sequence could be elicited even at very low stimulation intensities and the ratio between the peak EPSC and IPSC conductances was stable over a relatively wide range of stimulation intensities (Figure 3D). Repetitive $10 \text{ Hz}$ thalamic stimulation, however, altered this balance through a striking decrease in the amplitude of feed-forward IPSCs. Although after five stimuli, EPSC amplitude decreased by $51 \pm 4\%$ ($n = 7$), feed-forward IPSCs decreased by $89 \pm 3\%$ ($n = 8$) (Figures 3A and 3B). Repetitive stimulation, therefore, increased the ratio between excitation and inhibition in RS neurons. Repetitive stimulation, moreover, progressively increased the delay between the EPSC and IPSC to $2.1 \pm 0.4 \text{ ms}$ ($n = 5$) after the fifth stimulus. These data show that in the barrel cortex, thalamocortical feed-forward inhibition operates over a very broad dynamic range, allowing RS neurons to shift from coincidence detection to integration. We next determined the cellular basis of this dynamic range.

**Mechanism Underlying the Dynamics of Thalamocortical Feed-Forward Inhibition**

The activity-dependent reduction in the amplitude of thalamocortical feed-forward inhibition and the resulting increase in IW could be due to the depression of two distinct synapses: the glutamatergic synapse from thalamus to interneurons, or the GABAergic synapse from interneurons onto RS neurons. Depression of the second synapse would directly affect the amplitude of feed-forward inhibition; depression of the first synapse would reduce the fraction of interneurons that are excited above threshold for action potential generation and thus participate in the generation of feed-forward inhibition.

We addressed both possible mechanisms by directly recording from GABAergic interneurons. Because layer 4 inhibitory fast spiking (FS) neurons are directly excited by thalamic inputs (Gibson et al., 1999; Keller and White, 1987; Staiger et al., 1996) and inhibit RS neurons (Beierlein et al., 2003; Tarczy-Hornoch et al., 1998), they are likely to represent the predominant source of thalamocortical feed-forward inhibition. We thus recorded from connected FS to RS neurons pairs.

FS neurons showed functional connections with approximately $50\%$ of neighboring RS neurons. Unitary
IPSCs triggered by individual FS neuron spikes occurred without failures, had an average peak conductance of 2.8 ± 0.85 nS (n = 6), and decayed with a time course of 6.2 ± 2.5 ms (Figure 4A). The decay of the unitary IPSCs was not significantly different than the decay of feed-forward inhibition (6.5 ± 0.62 ms; n = 10; p = 0.79) evoked by thalamic stimulation, consistent with the idea that layer 4 FS neurons are the predominant mediator of thalamocortical feed-forward IPSCs. The latency between the action potential (steepest point in its rising phase) triggered in the FS neurons and the onset of unitary IPSCs (5% of peak amplitude) recorded in the RS neuron averaged 0.6 ± 0.03 ms (n = 5). This indicates that the first half of the 1.2 ms delay between the EPSP and the feed-forward IPSC determined above is used for thalamic EPSPs to reach threshold for action potential generation in FS neurons, whereas the second half is taken by spike propagation and GABA release.

Depression at the synapse from FS to RS neurons was pronounced but not enough to account for the reduction in thalamocortical feed-forward inhibition with repetitive thalamic stimulation. Trains of spikes triggered at 10 Hz in FS cells resulted in unitary IPSCs that depressed to 47% ± 1% of their original amplitude after the fifth stimulus (Figures 4A and 4C). Even when triggered at higher frequencies, unitary IPSCs did not depress to less than ~40% (Figure 4C). The dynamics of the GABAergic synapses, therefore, cannot account for the observed ~90% reduction in thalamocortical feed-forward inhibition.

Figure 4. Dynamics of the Input and the Output of Cortical FS Neurons
(A) Paired recording between a presynaptic FS (green) and a postsynaptic RS (black) neuron. Brief current pulses were injected in the FS neurons to trigger series of five action potentials at 10 Hz. Note that the resulting unitary IPSCs in the RS neuron depress to a much lesser extent than feed-forward IPSCs evoked with thalamic stimulation (superimposed blue trace, same as in Figure 3A).

(B) Unitary IPSC from (A) on an expanded time scale. A monoexponential fit (red trace) is superimposed on the decay phase. The inset illustrates the delay between the presynaptic spike and the postsynaptic response.

(C) Summary graph of unitary IPSC amplitude plotted against presynaptic spike number. Black solid circles, unitary IPSCs evoked at 10 Hz (n = 6); open symbols, unitary IPSCs evoked at 5 Hz (diamonds; n = 5), 20 Hz (down triangles; n = 5), 50 Hz (up triangles; n = 5), 100 Hz (squares; n = 5), 200 Hz (circles; n = 2). The reduction in amplitude of feed-forward IPSCs (blue solid circles; from Figure 3B) evoked with thalamic stimulation at 10 Hz is included, for comparison.

(D) Current trace, EPSCs recorded in an FS neuron (V_holding, −60 mV) in response to five thalamic stimuli delivered at 10 Hz. Summary graphs. Left, thalamic EPSC amplitude for nine similar experiments plotted against stimulus number. Right, thalamic EPSC amplitude recorded simultaneously in FS (solid symbols) and RS (open symbols) neurons plotted against stimulus number (n = 5). Summary graphs show mean ± SEM.
Neuron

These results suggest that during repetitive thalamic stimulation, progressively fewer FS neurons participate in mediating feed-forward inhibition after each stimulus in the train. By comparing the depression of unitary IPSCs (\(uI_5/uI_1\)) with the decrease in thalamically evoked feed-forward inhibition (FFI\(_5/FFI_1\)), one can estimate the maximal fraction of GABAergic interneurons still participating in feed-forward inhibition by the fifth stimulus (N\(_5/N_1\)) to be only about 20% of those active at the beginning of the train (FFI\(_5/FFI_1 = [uI_5/uI_1] \times [N_5/N_1]\)).

We thus tested the possibility that excitation of FS neurons by thalamic afferents may depress during repetitive thalamic stimulation, thereby reducing the fraction of recruited interneurons. When elicited at 10 Hz, thalamic EPSCs recorded in FS neurons showed a marked depression (to 31% ± 3% of the original amplitude after five stimuli; n = 9) (Figure 4D) that was, in fact, significantly larger than the depression of thalamic EPSCs onto RS neurons (to 49% ± 4%; n = 7; see Figure 3; p = 0.0014). We confirmed this target cell specificity in thalamic EPSP depression by recording thalamic EPSCs simultaneously in FS and RS neurons. Again, thalamic EPSCs recorded in FS neurons depressed significantly more than those recorded in RS neurons (to 39% ± 2% versus 56% ± 3%; n = 5; p = 0.013) (Figure 4D).

These results indicate that the broad dynamic range of thalamocortical feed-forward inhibition is primarily achieved by varying the fraction of thalamically recruited FS neurons and, to a lesser extent, by the dynamics of the FS to RS synapse.

**Thalamic Excitation of Cortical GABAergic Interneurons**

For feed-forward inhibition to effectively control the IW of RS neurons, it is expected that action potentials are readily triggered in FS neurons also in response to relatively weak thalamic stimuli.

Figure 3D shows that this is indeed the case as feed-forward inhibition on RS neurons can be triggered even at low stimulation intensities, when the average peak conductance of thalamic EPSCs recorded in FS neurons is below 0.25 nS. This suggests that either activation of a limited number of thalamic fibers is sufficient to trigger a spike in FS neurons or FS neurons have a higher probability of being contacted by a thalamic fiber than RS neurons. We addressed both possibilities.

If the probabilities of a thalamic axon to form synaptic contacts with FS and RS neurons are similar, the ratio of the amplitude of unitary thalamic EPSCs (EPSCs evoked by stimulating a single thalamic fiber [Beierlein and Connors, 2002]) recorded in FS and RS neurons should be similar to the ratio of the amplitude of compound EPSCs (EPSCs evoked by stimulating several thalamic fibers). Minimal stimulation of the thalamus was used to isolate unitary thalamic EPSCs in FS and RS neurons. The amplitude of unitary thalamic EPSCs was defined as the amplitude of the successes measured over a stimulation range in which, starting from failures only, increasing stimulation intensity reduced failure rate without affecting the average amplitude of successes. Unitary thalamic EPSCs recorded in FS neurons had a peak amplitude that was 3.5 times larger than the one recorded in RS neurons (FS neurons, 200 ± 42 pA; n = 6; RS neurons, 57 ± 15 pA; p = 0.023; n = 4) (Figures 5A and 5B). EPSC recorded in FS neurons also had faster decay kinetics than EPSC in RS neurons (1.5 ± 0.3 ms versus 4.5 ± 0.4 ms; p = 3.35 × 10^-5) consistent with the different kinetics of AMPA receptors expressed in these neurons (Jonas et al., 1994). Strikingly, also the amplitude of compound EPSCs recorded simultaneously in FS and RS neurons was 3.5 ± 0.6 times larger in FS neurons (n = 6), indicating that thalamic fibers contact FS and RS neurons with similar probabilities (Figures 5C and 5D).

The experiment shown in Figure 5A also demonstrates that an individual thalamic afferent can contact both FS and RS neurons. In this particular example, not only were the minimal stimulation criteria satisfied for both neurons simultaneously, but failures and successes were absolutely correlated, indicating that they were contacted by the same fiber.

We then determined the minimal number of thalamic fibers necessary to trigger a spike in FS neurons. For this, we compared the amplitude distribution of unitary EPSCs with the average size of thalamic EPSCs on FS neurons when stimulating the thalamus at threshold to induce feed-forward inhibition in simultaneously recorded RS neurons. Clearly, the distribution of the amplitudes of unitary EPSCs (range, 51–289 pA) (Figure 6) was similar to the distribution of the amplitudes of EPSC (average, 170 ± 64 pA; range 52–400 pA; n = 5) (Figure 6) recorded in FS neurons when stimulating at threshold for eliciting feed-forward inhibition in RS neurons. A comparison between the lower and the higher values in the two distributions of EPSC amplitudes suggests that one to eight thalamic fibers are sufficient to trigger a spike in FS neurons. Thus, even a single thalamic fiber can evoke feed-forward inhibition.

These data show that despite the similar probabilities of thalamic neurons to contact FS and RS neurons, strong thalamic input on FS neurons ensures efficient feed-forward inhibition and an accordingly narrow IW even in response to very weak thalamic activity.

**Temporal Precision of FS Neurons**

Despite the reduced fraction and increased delay of FS neuron recruitment, FS neuron activity remained remarkably synchronous during repetitive thalamic stimulation (Figures 7A and 7B). To estimate the degree of synchrony of FS neurons recruited after each thalamic stimulus, we deconvolved the time course of feed-forward inhibition recorded in RS neurons with the time course of a “standard” unitary IPSC (i.e., the averaged time course of unitary IPSCs recorded in our six connected FS to RS pairs) (Figure 7A). This analysis indicates that 50% of FS neurons spiked within a window of 0.22 ± 0.23 ms during the first response and within a window of 0.52 ± 0.41 ms during the fifth response of a train (n = 8). These results show that the degree of synchrony of FS neurons is only slightly affected by ongoing thalamic activity.

**Spiking of FS Neurons In Vivo**

The dynamic properties of the thalamocortical feed-forward inhibitory circuit observed in vitro leads to two predictions in the intact animal. First, because of the strong depression of the thalamus to FS synapse, repetitive whisker stimulation will markedly reduce spike...
probabilities in FS units. Second, despite a reduction in spike probabilities, spike jitter should remain constant in FS units. We found this to be clearly the case. We recorded single RS and FS units in layer 4, identified by extracellular spike waveform (Bruno and Simons, 2002; Swadlow, 1989) (Figure 7C). FS units had broader receptive fields, consistent with previous reports (Bruno and Simons, 2002). By the fifth stimulus in a 10 Hz PW deflection train, spiking probabilities of FS units adapted to less than 15% of the initial probabilities. However, in striking contrast to RS units, the spike jitter did not significantly increase during the stimulus train (first stimulus, 4.07 ± 0.78; fifth stimulus, 4.55 ± 0.71; n = 34; p > 0.05) (Figure 7D). These results are in good agreement with the in vitro data reported above and strongly suggest that the temporal precision of cortical responses to whisker stimuli is dynamically regulated by a thalamocortical feed-forward inhibitory circuit.

A Simple Disynaptic Model for Thalamocortical Feed-Forward Inhibition

To test whether the cellular and synaptic properties determined above are sufficient to account for the dynamics of thalamocortical feed-forward inhibition, we devised a simple model of the circuit (Figure 8). The model includes an RS neuron and a pool of FS neurons...
and three types of synapse: from VB to FS, from FS to RS, and from VB to RS neurons. Model parameters were measured and fitted independently for each cell type and for each synapse type. All three synapse types exhibit depression to account for the experimental data (Figure 8A). We modeled synaptic depression as a decrease in resource (such as vesicles) available after each spike followed by recovery with an exponential time constant (Abbott et al., 1997; Tsodyks and Markram, 1997).

Because of the depression of the synapse from VB to FS neurons, after each stimulus, progressively fewer FS neurons reach threshold (Figure 8B). By the fifth stimulus, the fraction of FS neurons that reached threshold for action potential generation was down to about 20%. The reduced number of FS neurons spiking, combined with depression at synapses from FS to RS (Figure 8B), causes a pronounced decrease in feed-forward inhibition onto RS neurons (Figure 8C). Just as seen in the experimental observations (dots), the model (traces) predicts that by the end of the stimulus train feed-forward inhibition has decreased by about 90%. The effect of this decrease on the responses of the RS neuron is to substantially broaden the IW (Figure 8D). The components of this simple model are not only sufficient to explain the decrease in feed-forward inhibition (Figure 8C), but also necessary. Depression at the inhibitory synapse, on its own, is insufficient (Figure 8A, middle). The decrease in number of FS neurons that reach threshold, caused by the depression of the synapse onto FS neurons, is also insufficient on its own, especially to account for the pronounced reduction seen already at the second stimulus (Figure 8B). Only the combination of these effects achieves the observed decrease (Figure 8C).

This minimal model of the thalamocortical projection demonstrates how a disynaptic circuit accounts for a dynamic range of feed-forward inhibition that exceeds the dynamic range of each individual synapse in the circuit. Under the dynamic control of disynaptic IPSCs, RS neurons can act over a range of IWs, rapidly shifting from precise coincidence detectors to integrators.

Discussion
Keeping Time
Somatosensory stimuli trigger precisely time-locked responses in cortical neurons (Arabzadeh et al., 2005; Phillips et al., 1988). Such temporal accuracy is essential for sensory representation. We have found that thalamocortical feed-forward inhibition generated by a simple disynaptic circuit governs this temporal precision. We show that this circuit can narrow the integration IW to \( w \approx 1 \) ms in barrel cortex neurons and thus may account for the temporal precision of these neurons to whisker stimulation (Arabzadeh et al., 2005; Petersen et al., 2001; Shimegi et al., 1999). Moreover, we show that the temporal window within which cortical neurons integrate thalamic activity (IW) is not fixed but can increase over an order of magnitude depending on the strength of feed-forward inhibition. The detailed in vitro analysis of the circuit resulted in testable predictions about the dynamics of RS and FS units during repetitive whisker stimulation in vivo. These predictions were verified by in vivo measurements of whisker-evoked spikes, strongly suggesting that feed-forward inhibitory circuits control temporal integration of somatosensory stimuli in vivo. Future manipulation of GABAergic transmission in vivo will allow more direct quantification of the contribution of inhibitory synapses.
Feed-forward inhibitory circuits are ubiquitous in the brain (Shepherd, 1998) and have been shown to control neuronal excitability in time (Berger and Luscher, 2003; Blitz and Regehr, 2005; Brunel et al., 2004; Mittmann et al., 2005; Pouille and Scanziani, 2001; Wehr and Zador, 2003) and space (Laaris et al., 2000; Lavallee and Deschenes, 2004; London et al., 1989; Mountcastle and Powell, 1959; Petersen et al., 2001). The presence of thalamocortical feed-forward inhibitory circuits in the somatosensory “barrel cortex” is well documented both anatomically (Keller and White, 1987; Staiger et al., 1996) and physiologically (Agmon and Connors, 1991; Agmon and O’Dowd, 1992; Gil and Amitai, 1996; Porter et al., 2001; Swadlow and Gusev, 2000; Wilent and Contreras, 2004; Zhu and Connors, 1999).

We show that the efficiency of feed-forward inhibition in reducing the IW of neurons in the barrel cortex results from the concurrent action of at least four factors: first, a powerful thalamic synapse onto GABAergic fast spiking (FS) interneurons, such that the activity of only one or a few inputs is sufficient to trigger a spike; second, a fast “monosynaptic” delay (between the onset of the thalamic EPSP and the onset of the feed-forward IPSC) comprising 0.6 ms for thalamic EPSPs to reach spike threshold in FS neurons and additional 0.6 ms for the spike in FS neurons to propagate and release GABA on RS neurons; third, a high probability of connection between FS and RS neurons; and fourth, a large unitary IPSC conductance in RS neurons.

A caveat to the present findings is that our measure of the IW in RS neurons is based on the interaction between thalamically evoked EPSP-IPSP sequences and artificial units during the train. Both RS and FS units showed rapid adaptation (RS, AI = 0.19 ± 0.03; FS, AI = 0.13 ± 0.02, p > 0.05, t test). Middle, FS units did not show increased spike jitter during trains. Right, population PSTHS for first and fourth stimuli in train for all FS units. Note constant spike jitter despite adaptation and increased delay. Summary graphs show mean ± standard deviation.

We show that the efficiency of feed-forward inhibition in reducing the IW of neurons in the barrel cortex results from the concurrent action of at least four factors: first, a powerful thalamic synapse onto GABAergic fast spiking (FS) interneurons, such that the activity of only one or a few inputs is sufficient to trigger a spike; second, a fast “monosynaptic” delay (between the onset of the thalamic EPSC and the onset of the feed-forward IPSC) comprising 0.6 ms for thalamic EPSPs to reach spike threshold in FS neurons and additional 0.6 ms for the spike in FS neurons to propagate and release GABA on RS neurons; third, a high probability of connection between FS and RS neurons; and fourth, a large unitary IPSC conductance in RS neurons.
EPSPs imposed with a somatic recording pipette. Thalamocortical feed-forward inhibition exceeds that of each individual synapse in the circuit and is responsible for the shift in the IW of RS neurons during repetitive thalamic stimulation. In principle, several properties of the circuit could contribute to the dynamic range, including the fraction of GABAergic interneurons recruited after each stimulus, the degree of synchrony of the recruited interneurons, the amount of GABA released on principal neurons, and their sensitivity to GABA. We show that spiking of FS neurons (in contrast to RS neurons) remains tightly time locked to each stimulus during the train, both in vivo and in vitro, suggesting that changes in synchrony do not contribute to the dynamics of feed-forward inhibition. The amplitude of the unitary IPSC decreased during repetitive presynaptic activity, but the magnitude of this depression is not sufficient to account for the full reduction in feed-forward inhibition. Rather, our data demonstrate that the broad dynamic range principally reflects the change in the fraction of GABAergic interneurons that are recruited by each thalamic stimulus. Our model shows that this change in fraction of recruited FS neurons can be well accounted for by the short-term dynamics of the thalamic input onto FS neurons. Although an activity-dependent reduction in the excitability of FS neurons could, in theory, also account for the observed reduction in the fraction of recruited FS neurons, two lines of evidence argue against this possibility. First, fast-spiking neurons show little spike adaptation to constant current injections and are, hence,
expected to adapt even less to brief phasic excitation separated by 100 ms. Second, the probability of spiking of FS neurons in response to a given whisker stimulus in a train is identical regardless of the success of the previous stimulus in the train to trigger a spike (data not shown).

The depression of thalamic EPSCs onto FS neurons is significantly larger than on RS neurons. This difference could be due to a postsynaptic property, namely a difference in the amount of and recovery from desensitization of AMPA receptors on the two types of neurons or to a presynaptic property, like the dynamic of transmitter release. We favor the second possibility because desensitization of AMPA receptors expressed in FS neurons recovers faster than in RS neurons (Jonas et al., 1994). Our physiological demonstration that a single thalamic fiber can impinge on both FS and RS neurons is consistent with anatomical evidence (see Figure 6F in Staiger et al., [1996]) and indicates that release properties from the thalamus are target cell specific.

Acute slices and anesthetized animals have low spontaneous activity compared to behaving animals. Thus, we were able to measure feed-forward inhibition at synapses that have “fully” recovered from previous activity, thus promoting strong feed-forward inhibition and narrow IWs. Increasing stimulus frequency to natural whisking frequency revealed the decrease in feed-forward inhibition and broadening of IWs. Thus, our experiments allowed us to explore the full dynamic range of thalamocortical feed-forward inhibition. In contrast, ongoing spontaneous thalamic activity in awake animals may depress thalamic inputs onto FS neurons even before the beginning of a whisking event (Castro-Alamancos, 2004), thereby reducing the dynamic range of feed-forward inhibition. However, in awake, behaving animals, neuromodulators and network activity may depolarize GABAergic interneurons such that even “depressed” thalamic inputs may be able to bring them to threshold for spike generation (Swallow and Gusev, 2000), which would reduce the dynamic range of feed-forward inhibition but maintain narrow IWs. Hence, the actual magnitude of thalamocortical feed-forward inhibition, its dynamic range, and the resulting width of the IW in layer 4 neurons is likely to be strongly dependent on the behavioral state of the animal. The data presented here therefore illustrate the potential strength and dynamic range of thalamocortical feed-forward inhibition and demonstrate that this circuit can powerfully control and modulate temporal integration during the initial steps of somatosensory processing.

Experimental Procedures

All experiments were carried out in accordance with the guidelines set forth by the University of California.

Slices
Thalamocortical slices (400 μm) were prepared from 14–25 day old ICR White or C57BL/6 mice (Agmon and Connors, 1991; Porter et al., 2001) incubated for 40 min in an interface chamber at 35°C with an artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, containing (in mM): 119 NaCl, 2.5 KCl, 1.3 NaHPO4, 325 MgCl2, 2.5 CaCl2, 26 NaHCO3, 20 glucose, and subsequently kept in the same chamber at room temperature for 0–6 hr until being transferred in a submerged chamber at 30°C–33°C for electrophysiological recordings.

In Vitro Thalamic Stimulation
Thalamic nuclei and barrels in the somatosensory cortex were first visualized with a low magnification objective with bright-field illumination and connectivity between the thalamus and the cortex assessed with a field-recording electrode (a patch pipette filled with 2 M NaCl) placed in the layer 4 of the barrel cortex while electrically stimulating thalamic afferents (stimulus duration, 100 μs; stimulus amplitude, 5–100 μA) with a monopolar steel electrode placed in the ventrobasal nucleus (VB) close to the border with the nucleus retractoris thalami, near the fimbria. We considered field responses of above 100 μV amplitude as acceptable evidence for a reliable connection. To ensure that the observed responses resulted from orthodromic stimulation of thalamocortical axons rather than antidromic stimulation of cortico-thalamic axons, we routinely determined three electrophysiological parameters of the response, namely latency, paired pulse ratio, and supernormality (Beierlein and Connors, 2002). We only considered experiments in which EPSPs recorded in layer 4 occurred at short latencies (<3.5 ms), showed paired pulse depression, and displayed no supernormality (i.e., decrease in latency of the second EPSP elicited 100 ms or less after the first).

In Vitro Recordings
Whole-cell recordings of visually identified neurons (infrared DIC videomicroscopy and water immersion objective [40×]) in layer 4 were obtained with patch pipettes (2–4 MΩ) containing (in mM): 150 K gluconate, 5 HEPES, 1.1 EGTA, 0.5–1 MgCl2, 10 phosphocreatine, biocytin (0.1%–0.5%), and the pH adjusted to 7.2 with glacial acetic acid. The firing pattern of the recorded neurons was determined immediately after rupturing the membrane by injecting 800 ms current pulses of incremental amplitude (50–600 pA) in the current-clamp mode. Regular spiking (RS) neurons were identified by their rapid adaptation of the instantaneous firing frequency in response to a square pulse of current (from a peak frequency of 161 ± 14 Hz [first two spikes] to a frequency of 29 ± 2 Hz [averaged over 100 ms, 400 ms after the beginning of the pulse]; 300–600 pA current injection; steady state to peak frequency ratio, 0.2 ± 0.02), a relatively long membrane time constant (16.8 ± 1 ms), a high input resistance in response to a 50 pA negative current pulse (232 ± 16 MΩ), and a relatively depolarized spike threshold (−49 ± 1 mV). Fast-spiking neurons were identified by a much less pronounced adaptation of the firing frequency (from a peak frequency of 106 ± 15 Hz [first two spikes] to a frequency of 92 ± 11 Hz [averaged over 100 ms, 400 ms after the beginning of the pulse]; 400–600 pA current; steady state to peak frequency ratio, 1.1 ± 0.27, a faster membrane time constant (0.7 ± 1 ms), and a lower input resistance (81 ± 8 MΩ; spike threshold, −51 ± 1 mV; all values above were measured from a set of nine simultaneously recorded, FS/RS pairs) (Feldmeyer et al., 1999; Gibbon et al., 1999; Kawaguchi and Kubota, 1997; McCormick et al., 1985). Low threshold spiking interneurons (Beierlein et al., 2003) were not included in the study.

In Vitro Data Acquisition and Analysis
Data were recorded with Multiclamp 700A or Axopatch 200B amplifiers, digitized at 5–10 kHz, and analyzed offline. Voltage measurements were corrected for the experimentally determined junction potential of 12 mV. Average values are expressed as mean ± SEM. The Student’s t test was used for statistical comparisons. Electrophysiological traces illustrated in the figures represent the average averages about 10 to 40 individual sweeps, unless stated otherwise. To deconvolve the unitary IPSC from the feed-forward IPSC, we modeled the firing of FS neurons as occurring in a sharp onset followed by an exponential decay. This function is $f(t) = (A/\tau) \times \exp(-t/\tau)$, with parameters $A$ and $\tau$. We obtained these parameters by minimizing the square difference between the measured feed-forward IPSC and the convolution of $f(t)$ with the unitary IPSC.

Dynamic Clamp
Dynamic clamp was used to simulate excitatory synaptic conductances, $g_{syn}(t)$, as follows: $I_{syn}(t) = g_{syn}(t) \times (V(t) - V_{rev})$, in which
I_{\text{inj}}(t) is the current injected in the recorded neuron, \( V_m(t) \) is the membrane potential of the neuron, and \( V_{\text{rev}} \) is the reversal potential of the synaptic conductance to be simulated and was set at 0 mV. The time course of \( \theta_{\text{syn}}(t) \) was given by the sum of two exponentials, \( \tau_{\text{rise}} \) and \( \tau_{\text{decay}} \), of 0.15 and 1 ms, respectively. The amplitude ranged between 2 and 3 nS. The operation was performed with an analog circuit (5 MHz bandwidth) connected to the amplifier. Input and output signals were filtered at 5 kHz as described previously (Pouille and Scanziani, 2001). In three experiments, a standard current clamp configuration was used instead (\( I_{\text{inj}} \) independent of \( V_m \)) in which the time course of \( I_{\text{inj}} \) was the same as \( \theta_{\text{syn}} \) and the peak value of \( I_{\text{inj}}(t) \) was either 100 or 200 pA.

In Vivo Recordings and Analysis
Long-Evans rats (P30–45) were anesthetized with urethane (Sigma, 1.5g/kg, i.p.) and prepared for acute recording as described previously (Celikel et al., 2004). Recordings were obtained with glass-insulated carbon fiber electrodes (0.5–1 MΩ at 1 kHz), or tungsten microelectrodes (2–4 MΩ at 1 kHz). Signals were preamplified (1,000×), band-pass filtered (0.5–10 kHz), further amplified (5×), and digitized at 32 kHz with custom Igor routines (Wavemetrics). Spike sorting was performed offline with a published algorithm (Fee et al., 1996) implemented in Matlab (Mathworks) by S. Mehta and D. Kleinfeld. Whiskers were deflected with calibrated, computer-controlled piezolectric actuators 9 mm from the face. Initial mapping was performed to locate the barrel column of interest and layer 4 identified by depth and response latency (Celikel et al., 2004). Whisker deflection (250 μm ramp-and-hold deflection, 50 or 100 ms duration, rise/fall time 4 ms) were delivered at 0.5 Hz or in 10 Hz trains. 100 trials were collected at each recording site. Anesthesia was maintained by additional urethane (10% of original dose, i.p.) at a level that suppressed corneal and limb withdrawal reflexes and maintained breathing rate at <2 Hz. Columbar position and laminar location of all cortical recording sites were confirmed by lesion recovery (5 μA, 10 s) in cytochrome-oxidase-stained sections (Fox, 1992). Data analysis: spike counts and spike jitter were calculated for onset responses (spikes within 50 ms of deflection onset); spike jitter was defined as the standard deviation of the Gaussian fits of the onset PSThS.

Model
This simple model of thalamocortical excitation and feed-forward inhibition includes three synapses (VB-FS, FS-RS, and VB-RS) each subject to synaptic depression (Figure 8). Each synapse type is described by only two parameters: a factor \( u \) and the time constant of recovery \( \tau_r \). We obtained these parameters from responses to presynaptic trains at the following frequencies (in Hz): 2.5, 5, 10, 20, 50, and 100. Depression was pronounced at the synapse from VB to FS (\( u = 0.33, \tau_r = 2.2 s \)) and less pronounced at the synapse from FS to RS (\( u = 0.26, \tau_r = 4.1 s \)) and at the synapse from VB to RS (\( u = 0.80, \tau_r = 0.2 s \)). FS neurons (\( n = 100 \)) were described by an integrate-and-fire model with refractory period (\( R_{\text{ref}} = 100 \) MΩ; \( \tau_{\text{mem}} = 9.7 ms \); \( V_{\text{thresh}} = -51 mV \)) and received a variable number of thalamic inputs such that the mean conductance of the thalamic EPSPs was 7.5 nS (with reversal potential \( E_{\text{rev}} = 0 mV \) and varied by a factor of ten. We modeled the RS neuron as a single passive compartment (\( R_{\text{neur}} = 200 M\Omega; \tau_{\text{mem}} = 16 ms \)) that receives an EPSC from VB with reversal potential \( E_{\text{rev}} = 0 mV \) and, 1 ms later, an IPSC from FS neurons (with reversal potential \( E_{\text{rev}} = -85 mV \)).

Acknowledgments
We thank the members of the Scanziani lab for comments on the manuscript and Stefan Baumann for help in the development of the model. This work was supported by the Swiss National Science Foundation (M.S. and M.C.) and National Institutes of Health grants MH71401 and MH70058 (M.S.) and the McKnight Foundation (D.E.F.).

References
Temporal Integration in Somatosensory Cortex

GluR-B subunit expression. Neuron


